∴∠BEC =∠DEC.………………………………………………………………… (1分) (2)联结BD .………………………………………………………………………(1分) ∵CE=CD,∴∠DEC =∠EDC.…………………………………………………… (1分) ∵∠BEC =∠DEC,∠BEC =∠AEF,∴∠EDC=∠AEF. ∵∠AEF+∠FED=∠EDC+∠ECD,
∴∠FED=∠ECD.………………………………………………………………… (1分) ∵四边形ABCD是正方形,
11
∴∠ECD=∠BCD =45°, ∠ADB=∠ADC= 45°,∴∠ECD=∠ADB.… (1分)
22
∴∠FED=∠ADB. ……………………………………………………………… (1分) 又∵∠BFD是公共角,∴△FDE∽△FBD,…………………………………… (1分) EFDF2
∴,即DF EF BF. ………………………………………………(1分) DFBF
20、(徐州市2012年模拟)(6分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE CF,AF DE. 求证:(1)△ABF≌△DCE; (2)四边形ABCD是矩形. A D B C
E F
(第21题) 答案:解:(1) BE CF,
BF BE EF,CE CF EF, BF CE. ······························· 1分 四边形ABCD是平行四边形,
AB DC. ······························ 2分 在△ABF和△DCE中,
AB DC,BF CE,AF DE,
△ABF≌△DCE. ··························· 3分 (2)解法一: △ABF≌△DCE,
B C. ······························ 4分 四边形ABCD是平行四边形, AB∥CD.
B C 180 .
B C 90 . ···························· 5分
·························· 6分 四边形ABCD是矩形.
解法二:连接AC,DB. △ABF≌△DCE, AFB DEC.
AFC DEB. ··························· 4分