手机版

Quaternionic Computing

发布时间:2021-06-08   来源:未知    
字号:

Quaternionic Computing

QuaternionicComputing

Jos´eM.Fernandez,WilliamA.Schneeberger

arXiv:quant-ph/0307017v2 5 Nov 2004February1,2008AbstractWeintroduceamodelofcomputationbasedonquaternions,whichisinspiredonthequantumcomputingmodel.Purestatesarevectorsofasuitablelinearspaceoverthequaternions.Otheraspectsofthetheoryarethesameasinquantumcomputing:super-positionandlinearityofthestatespace,unitarityofthetransformations,andprojectivemeasurements.However,onenotableexceptionisthefactthatquaternioniccircuitsdonothaveauniquelyde nedbehaviour,unlessatotalorderingofevaluationofthegatesisde ned.Givensuchanorderingauniqueunitaryoperatorcanbeassociatedwiththequaternioniccircuitandapropersemanticsofcomputationcanbeassociatedwithit.Themainresultofthispaperconsistsinshowingthatthismodelisnomorepowerfulthanquantumcomputing,aslongassuchanorderingofgatescanbede ned.Moreconcretelyweshow,thatforallquaternioniccomputationusingnquaterbits,thebehaviourofthecircuitforeachpossiblegateorderingcanbesimulatedwithn+1qubits,andthiswithlittleornooverheadincircuitsize.Theproofofthisresultisinspiredofanewsimpli edandimprovedproofoftheequivalenceofasimilarmodelbasedonrealamplitudestoquantumcomputing,whichstatesthatanyquantumcomputationusingnqubitscanbesimulatedwithn+1rebits,andinthiswithnocircuitsizeoverhead.Beyondthispotentialcomputationalequivalence,however,weproposethismodelasasimplerframeworkinwhichtodiscussthepossibilityofaquaternionicquantummechanicsorinformationtheory.Inparticular,italreadyallowsustoillustratethattheintroduction

ofquaternionsmightviolatesomeofthe“natural”propertiesthatwehavecometoexpectfromphysicalmodels.

1Introduction

QuantumComputingrepresentsyetanotherdisconcertingpuzzletoComplexityTheory.Whatweknowtodayisthatquantumcomputingdevicescane cientlysolvecertainproblems,which,inappearance,classicalorprobabilisticcomputerscannotsolvee ciently.EventhoughwewouldliketobelievethatquantumcomputingviolatesthestrongChurch-Turingthesis,thesoretruthisthattheknownresultsdonotprovideusaproof,onlyconstituting,atbest,“strongevidence”thereof.

Yet,eventhoughwecannotprovideastrictseparationbetweenthesemodels,wedoknowcertaininclusionsbetweenvariationsofthesecomputingmodels.Perhapsthemostnatural

Quaternionic Computing.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)