Quaternionic Computing
isgivenby,
Tr1(ρ)=[In|0]ρ[In|0] +[0|In]ρ[0|In]
=A+D
Inparticular,wehavethat
|Φ0 Φ0|=(T0 |Φ )(T0 |Φ )t
whichbyapplyingtranspositionrulesforblockmatricesandEquation12gives
=
= Re(|Φ )Re(|Φ )Re( Φ|)
Im(|Φ )Re( Φ|)Im( Φ|) (30)
Im(|Φ )Re( Φ|)
Re(|Φ )Re( Φ|) (32)
Bysymmetry,wethushavethesameexpressionforbothpartialtraces
ρ0=ρ1=Re(|Φ )Re( Φ|) Im(|Φ )Im( Φ|)
=Re(|Φ Φ|)(33)
Since|Φ Φ|ishermitian,itsdiagonalentriesareallreal,andthereforeithasthesamediagonalentriesasρ0andρ1.
Inotherwords,combiningthiswithLemma4,wearrivetotheconclusionthatitdoesnotmatterwhatwesetastheinitialvalueofthetopwire,|0 or|1 .Furthermore,itiseasytoverifythatany1-rebitstatewilldo,whetherpureoreventotallymixed,aslongasitisunentangledanduncorrelatedwiththebottomwires.
3.4
3.4.1FurtherConsiderationsandConsequencesComplexityofsimulation
Ingeneral,ifweinitiallyhavead-qubitgate,thenewgatewillbea(d+1)-rebitgate.However,ifUgcontainsonlyrealentries,thenOg=I Ug,whichmeansthatinthisparticularcasethetoprebitneednotbeinvolved,andthereforethenewgateisthesameastheoriginal.Ifthewholequantumcircuitwearegivenisconstructedwithsuchrealgates,thenweareinluckandwedonotrequiretheextrarebitatall.Inthegeneralcomplexcase,however,thecircuitwidthisatmostonemorethanthatoftheoriginalcircuit.