Quaternionic Computing
U (g)
O(g )Og
S 2, j
1
S 3, k
1
S 3, k
1
S 2, j
1
Og j Ug j+1 Og I k+1 Og
k
Ug
Figure 4: Obtaining an expression for the (N+ 1)-ary circuit O (g) .O (1) O ( 2) O ( 3) O ( 4)
O1 U2 U3 U4 U1 U3 O1 O3 O2 O3 O4
Figure 5: Simulation of a quantum circuit by a real circuit. What is remarkable about this scheme, is that despite its simplicity, it gives precisely what we wanted, this is, that the nal operator OC be in some sense as similar as possible to the operator UC of the original circuit. In fact, we have the following third nice property of our simulation. Lemma 3. The inverse image of OC is precisely UC, i.e. OC= h(UC ). Proof. Because of the serialisation of Step 1, we have that UC= U (s) . . . U (2) U (1) . We use this and the group isomorphism properties of h from Lemma 1 to obtain the following expression for its image h(UC )= h(U (s) . . . U (1) )= h(U (s) ) . . . h(U (1) )s 1
=i= 0, g=s i
h(U (g) )
Quaternionic Computing
WecannowusetheexpressionofEquation17tosubstituteforU(g),
=h(Sg(Ug In 2)Sg) =h(Sg)h(Ug In 2)h(Sg)
SinceSgiscomposedonlyof0’sand1’s,wehavethatRe(Sg)=SgandIm(Sg)=0.Fur-
′thermore,wehavethatSg=I1 Sgfromtheirde nitioninEquations(17)and(22),and
thus,
=(I1 Sg)h(Ug In 2)(I1 Sg) ′′=Sgh(Ug In 2)Sg
However,thetensorproductisjustaformaloperation,anditsassociativitypropertyholdsevenwithatensorofoperatorslikeT.Hence,wehave
′′=Sg[T (Ug In 2)]Sg ′′=Sg[(T Ug) In 2]Sg ′′=Sg[h(Ug) In 2]Sg ′′=Sg(Og In 2)Sg
whichwiththepaddingexpressionofO(g)inEquation22 nallygives
=s 1 O(g)=OC.(23)
i=0,g=s i
3.3.4CircuitInitialisationandMeasurement
HavingdescribedhowtoconstructtherealcircuitC′fromtheoriginalcircuitC,westillhavetoaddresstheissueofhowtoinitialiseC′inStep4,andfurthermoreofhowtointerpretanduseitsmeasurementstosimulatetheinitialquantumalgorithminStep5.
Let|Ψ representtheinitialstategiventoC,andlet|Φ beitsimageunderUC,i.e.the nalstateofthecircuitbeforemeasurement.Ifwethinkbackofthetwohomomorphismsh0and
NNh1fromHCtoHC,inducedbyh,wehavetwologicalchoicesforinitialisingthecorrespondingrealcircuitOC,thestates|Ψ0 and|Ψ1 .Whichshouldwechoose,andineithercasewhatwilltheoutputlooklike?Theanswertothelatterquestionisgivenbythefollowinglemma.Lemma4.Theimagesof|Ψ0 and|Ψ1 intherealcircuitC′are
OC|Ψ0 =T0 |Φ =|Φ0 OC|Ψ1 =T1 |Φ =|Φ1
(24)(25)