手机版

Quaternionic Computing(13)

发布时间:2021-06-08   来源:未知    
字号:

Quaternionic Computing

U (g)

O(g )Og

S 2, j

1

S 3, k

1

S 3, k

1

S 2, j

1

Og j Ug j+1 Og I k+1 Og

k

Ug

Figure 4: Obtaining an expression for the (N+ 1)-ary circuit O (g) .O (1) O ( 2) O ( 3) O ( 4)

O1 U2 U3 U4 U1 U3 O1 O3 O2 O3 O4

Figure 5: Simulation of a quantum circuit by a real circuit. What is remarkable about this scheme, is that despite its simplicity, it gives precisely what we wanted, this is, that the nal operator OC be in some sense as similar as possible to the operator UC of the original circuit. In fact, we have the following third nice property of our simulation. Lemma 3. The inverse image of OC is precisely UC, i.e. OC= h(UC ). Proof. Because of the serialisation of Step 1, we have that UC= U (s) . . . U (2) U (1) . We use this and the group isomorphism properties of h from Lemma 1 to obtain the following expression for its image h(UC )= h(U (s) . . . U (1) )= h(U (s) ) . . . h(U (1) )s 1

=i= 0, g=s i

h(U (g) )

Quaternionic Computing

WecannowusetheexpressionofEquation17tosubstituteforU(g),

=h(Sg(Ug In 2)Sg) =h(Sg)h(Ug In 2)h(Sg)

SinceSgiscomposedonlyof0’sand1’s,wehavethatRe(Sg)=SgandIm(Sg)=0.Fur-

′thermore,wehavethatSg=I1 Sgfromtheirde nitioninEquations(17)and(22),and

thus,

=(I1 Sg)h(Ug In 2)(I1 Sg) ′′=Sgh(Ug In 2)Sg

However,thetensorproductisjustaformaloperation,anditsassociativitypropertyholdsevenwithatensorofoperatorslikeT.Hence,wehave

′′=Sg[T (Ug In 2)]Sg ′′=Sg[(T Ug) In 2]Sg ′′=Sg[h(Ug) In 2]Sg ′′=Sg(Og In 2)Sg

whichwiththepaddingexpressionofO(g)inEquation22 nallygives

=s 1 O(g)=OC.(23)

i=0,g=s i

3.3.4CircuitInitialisationandMeasurement

HavingdescribedhowtoconstructtherealcircuitC′fromtheoriginalcircuitC,westillhavetoaddresstheissueofhowtoinitialiseC′inStep4,andfurthermoreofhowtointerpretanduseitsmeasurementstosimulatetheinitialquantumalgorithminStep5.

Let|Ψ representtheinitialstategiventoC,andlet|Φ beitsimageunderUC,i.e.the nalstateofthecircuitbeforemeasurement.Ifwethinkbackofthetwohomomorphismsh0and

NNh1fromHCtoHC,inducedbyh,wehavetwologicalchoicesforinitialisingthecorrespondingrealcircuitOC,thestates|Ψ0 and|Ψ1 .Whichshouldwechoose,andineithercasewhatwilltheoutputlooklike?Theanswertothelatterquestionisgivenbythefollowinglemma.Lemma4.Theimagesof|Ψ0 and|Ψ1 intherealcircuitC′are

OC|Ψ0 =T0 |Φ =|Φ0 OC|Ψ1 =T1 |Φ =|Φ1

(24)(25)

Quaternionic Computing(13).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)