手机版

Quaternionic Computing(14)

时间:2025-04-26   来源:未知    
字号:

Quaternionic Computing

Proof.AsintheproofofLemma1,allwerequirearethematrixmultiplicationrulesofEqua-tion12

OC|Ψ0 =(T UC)(T0 |Ψ0 ) Re(UC)= Im(UC)Im(|Ψ0 ) Re(UC)Re(|Ψ0 )+Im(UC)Im(|Ψ0 )=

=T0 (UC|Ψ0 )=T0 |Φ =|Φ0 Im(UC|Ψ0 )(26)

Withthesamemethod,wecanobtainasimilarexpressionforΦ1,i.e.

OC|Ψ1 =(T UC)(T1 |Ψ1 ) Re(UC)= Im(UC)

=T1 |Φ =|Φ1 Re(|Ψ1 )=...

(27)

Letusassumeforamoment—andinfact,thisiswithoutlossofgenerality—thattheoriginalcircuitwastobeinitialisedwithsomebasevector|x ,witha nalstate|Φ =U|x .Again,therearetwopossiblechoicesforinitialisingthecorrespondingrealcircuit,namely|x0 =|0 |x and|x1 =|1 |x .Whatwouldthenbetheoutputofthesimulatedcircuitineithercase?Intheveryspecialcasethat|Φ isalsoabasevector,thenwewouldhave|Φ0 =|0 |Φ and|Φ1 =|1 |Φ ,andthus,ineithercase,thebottomn-wireswouldcontaintherightanswerandwecanignorethetopwire.Butwhen|Φ issomearbitrarypurestate,neitherpurelyrealnorpurelyimaginary,wecannotgivesuchanicesemantictothetopwire.Inparticular,itmightbeentangledwiththerestofthewires,andhencewecannotfactorthe nalstate.

Nonetheless,whatissurprisingisthatifwetraceoutthetopwire,inallcaseswewillgetthesamestatisticsandfurthermorethatwewillobtaintherightstatistics,i.e.thesameasifwehadusedtheoriginalquantumcircuitC.Moreformally,wehave

Lemma5.Let|Φ beanarbitraryn-qubitpurestate,andletρ0=Tr1|Φ0 Φ0|andρ1=Tr1|Φ1 Φ1|representthepartialtracesobtainedbytracingout(i.e.forgettingabout)thetopwire.Thenwehavethat

ρ0=ρ1,

Diag(ρ0)=Diag(ρ1)=Diag(|Φ Φ|).(28)(29)

Proof.Thepartialtraceofthe rstwireofanarbitrarydensityoperatorgiveninblockmatrixform Aρ=C

Quaternionic Computing(14).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)