Quaternionic Computing
setofgates.Inparticular,itwillworkwithgateswhichhavearbitrarycomplextransitionamplitudes.Inotherwords,inprovingthefollowing,moregeneraltheorem,wewillcompletelyignoretheaboveresults.ThatwillallowustorecycleitsprooflateroninSection4.
Theorem2.Anyn-qubitquantumcircuitconstructedwithgatesofdegreedorless(possiblyincludingnon-standardcomplexcoe cientsgates)canbeexactlysimulatedwithann+1rebitcircuitwiththesamenumberofgatesofdegreeatmostd+1.
3.3
3.3.1ANewProofofEquivalenceTheUnderlyingGroupTheory
TheideabehindtheproofistomakeuseofthefactthatthegroupSU(N)canbeembeddedintothegroupSO(2N).Weprovideanexplicitembeddingh.4Whilethismappingisnotunique,whatisspecialaboutitisthatithasallthenecessarypropertiesforustode neasoundsimulationalgorithmbasedonit.Thismappingisde nedasfollows.GivenanarbitraryunitarytransformationU,itsimageO=h(U)is
Re(U)hU→O=h(U) Im(U)
Independently,Aharonov[3]hasalsousedthismappingrecentlytoprovideasimpleproofthatTOFFOLIandHADAMARDareuniversal.4