手机版

Quaternionic Computing(4)

时间:2025-04-26   来源:未知    
字号:

Quaternionic Computing

equivalenttotheidentityoperationandbrasaresimplytransposedkets.Similarlythematrixdaggeroperator( )canbereplacedwiththematrixtransposeoperator(t).

Inthiscase,wemustreplaceunitarytransformationswithorthonormaltransformations,asthesearetheonlyinner-productpreservingoperationsonthisinner-productspace.Onecouldconceiveamodelinwhichthestatevectorsalwayshaverealamplitudes,butinwhicharbitraryunitarytransformations(onthecomplexHilbertspace)areallowed,aslongastheendresultisstillarealamplitudevector.Itiselementarytoshowthatorthonormaltransformationsaretheonlyonesthathavethisproperty,andhencethismodelisasgeneralascanbe,giventhefactthatweinsistthattheamplitudesbereal.

RebitsandStates

Inquantumcomputingandquantuminformationtheory,wede nethequbitasthemostelementaryinformation-containingsystem.Abstractly,thestateofaqubitcanbedescribedbya2-dimensionalstatevector

|Φ =α|0 +β|1 ,s.t. Φ 2=

a2+b2=1(4)

Inthiscase,thearbitraryphasefactorcanonlybe+1or 1,andtherebitequivalencerelationwhichreplacesEquation3is

Φ≡Φ′ |Φ =eiθ|Φ′ ,whereθ∈{0,π} |Φ =±|Φ′ (5)(6)

Similarlyasforqubits,singlerebitstatesdohaveanicegeometricalinterpretation:theyareisomorphictothecircumference,having|0 and|1 atoppositeextremes.OnewaytoseethisistoconsiderthelocusofpointsintheBlochsphereforwhicheiθ=1,orinotherwords,thosewithnocircularpolarisation.Unfortunately,thereisnosuchnicegeometricrepresentationofanarbitraryn-qubitstate,andwebelievethesameistrueforn-rebitstates.

Thecomputationalbasisvectorsforarebitarestill|0 and|1 ,andforarbitraryn-rebitsystemstheycanalsoberepresentedasn-bitstrings.Themeasurementruleinde ningtheprobabilitiesofobtainingthecorrespondingbitstringasaresultisessentiallythesameasEquation1,

Pr(|Φ →“b”)=| Φ|b |2= Φ|b 2

(7)

Quaternionic Computing(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)