手机版

Quaternionic Computing(8)

时间:2025-04-26   来源:未知    
字号:

Quaternionic Computing

Proof.The rststepistoobtainasimplematrixmultiplicationruleformatrices,usingtheoperatorsReandIm.Forarbitrarycomplexnumbersαandβ,wehavethat

Re(αβ)=Re(α)Re(β) Im(α)Im(β)

Im(αβ)=Re(α)Im(β)+Im(α)Re(β)(11)

Sincetheserulesholdfortheproductsofalloftheirentries,itistheneasytoseethatthissamemultiplicationrulewillalsoholdforcomplexmatrices.Inotherwords,wecansubstituteαandβinEquation11withanytwoarbitrarycomplexmatricesAandBwhicharemultipliable,toget

Re(AB)=Re(A)Re(B) Im(A)Im(B)

Im(AB)=Re(A)Im(B)+Im(A)Re(B)

Wearenowequippedtoverifyourclaim

h(A)h(B)=(T A)(T B) Re(A)Im(B)= Im(A)Re(B) Re(A)Re(B) Im(A)Im(B)= Im(A)Re(B) Re(A)Im(B) Im(AB)

Re(AB)

=T AB=h(AB)(13)(12)

Finally,wewanttoshowthatGN SO(2N).ThisisequivalenttoshowingthatalltheimagesO=h(U)areorthonormal,i.e.thatOt=O 1.SincebyLemma1hisagrouphomomorphism,itmapsinverseelementsintoinverseelements,i.e.h(U 1)=h(U) 1.SinceUisunitary,wehavethat

O 1=h(U) 1=h(U 1)=h(U )(14)

whilethefollowinglemmawillgiveusanexpressionforOt.

Lemma2.LetAbeanarbitraryN×Ncomplexmatrix,thenh(A )=h(A)t.

Proof.Byde nitionofhandbytranspositionrulesofblockmatrices,wehave

h(A)t=(T A)t

Re(A)= Im(A)

Im(A)t

Re(A)t

=Re(A )

Im(A )

Quaternionic Computing(8).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)