手机版

Quaternionic Computing(2)

发布时间:2021-06-08   来源:未知    
字号:

Quaternionic Computing

variationfromstandardQuantumComputingisthatinwhichwechangethedomainofthestatevectoramplitudes,andhencethedomainoftheirallowedlineartransformations.

Itwas rstshownthatrestrictingourselvestorealamplitudesdoesnotdiminishthepowerofquantumcomputing[7],andfurther,thatinfactrationalamplitudesaresu cient[1].BoththeseresultswereprovenintheQuantumTuringMachinemodel,andtherespectiveproofsarequitetechnical.Directproofsofthe rstresultforthequantumcircuitmodelstemfromthefactthatseveralsetsofgatesuniversalforquantumcomputinghavebeenfound[14,8,19,18],whichinvolveonlyrealcoe cients.

Inthispaper,weintroduceanotherpossiblevariationonquantumcomputinginvolvingquater-nionicamplitudes,andproveanequivalenceresultthatshowsthatnofurthercomputationalshouldreasonablybeexpectedinthismodel.InSection2,wewillstartbyrede ningquantumcomputinginanaxiomaticfashion,whichwillmakeitpossibletoeasilygeneralisethemodelforothernon-complexHilbertspaces.Wewillrede neandreviewtheresultsknownforcom-putingonrealHilbertspacesinSection3,alsoprovidinganewgenericandstructuralproofoftheequivalenceofthismodeltostandardcomplexquantumcomputing.WewillintroducethequaternioniccomputingmodelinSection4,discusssomeofitspeculiarities,andthenshowhowtheaboveproofcanbeeasilyadaptedtothequaternioniccase.InSection5,wediscusssomeofthisresultintermsofcomputationalcomplexityandalsooftheparticularitiesofthequaternionicmodeloninitspossible“physical”interpretations.Finally,wesummariseourconclusionsandproposefurtheropenquestionsinSection6.

2QuantumComputingRevisited

ThebasictenetsofQuantumComputing,areasfollows:

States.Thepurestatesdescribingtheinternalcon gurationofannqubitcomputingdevice

arede nedas1-dimensionalraysina2n-dimensionalvectorspaceoverthecomplexnumbers.Oversuchavectorspace,theusualinner-productde nesthestandardL2-norm,whichinturnde nesaproperHilbertspace1.Withrespecttothisnorm,statesarenormallyrepresentedasunitvectors,uptoanarbitraryphasefactoreiθ,with0≤θ<2π.Measurement.Thecanonicalbasisofthisvectorspaceisgivenspecialmeaning,andcalled

thecomputationalbasis,inthatitrepresentsstateswhichalwaysgivethesameoutcomewhen“queried”abouttheirinformationcontent.Thestatesareusuallylabelledbyn-bitstringsb=b1...bn.Foragenericpurestate|Φ ,theprobabilitiesofmeasurementoutcomesaregivenbythefollowingrule

Pr(|Φ →“b”)=| Φ|b |2

where|b issomecomputationalbasisvector.(1)

Quaternionic Computing(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)