Quaternionic Computing
Furthermore,theusualvectorinnerproducthastherequiredproperties(i.e.itisnormde ning),andaproperHilbertspacecanbede nedonanyquaternioniclinearspace.
Itisalsopossibletocomplexifythequaternions,thisis,torepresentthemintermsofcomplexnumbersonly.Letα beanarbitraryquaternion,thenwede neitscomplexandweirdpartsas
Co( α) a0+a1i
Wd( α) a2+a3i.
Wecanthendecomposeα initscomplexandweirdpartasfollows:
α =a0+a1i+a2j+a3k
=(a0+a1i)+(a2+a3i)j
=Co( α)+Wd( α)j
Thisequationallowsustoderivemultiplicationrules,similartothoseofEquation11
)=Co( ) Wd( )Co( αβα)Co(βα)Wd (β
)=Co( )+Wd( )Wd( αβα)Wd(βα)Co (β(41)(38)(39)(40)
wherewede neCo ( α) [Co( α)] ,andsimilarlyfortheweirdpartWd ( α) [Wd( α)] .Itisinterestingtonotehowthenon-commutativityofquaternionsismadeapparentbythefactthat ,unliketheirequivalentfor andβneitheridentityinEquation41issymmetricwithrespecttoα
complexnumbers(Equation11),becauseingeneralCo ( α)=Co( α)andWd ( α)=Wd( α).WecanalsorewriteEquation37forthemodulusas
|α |=
|2|α |2+|β
uptoanarbitraryquaternionicphasefactor.Indeed,wehavethat
Φ≡Φ′ |Φ =η |Φ′ ,where|η |=1.(44)(45)