手机版

Quaternionic Computing(18)

发布时间:2021-06-08   来源:未知    
字号:

Quaternionic Computing

Furthermore,theusualvectorinnerproducthastherequiredproperties(i.e.itisnormde ning),andaproperHilbertspacecanbede nedonanyquaternioniclinearspace.

Itisalsopossibletocomplexifythequaternions,thisis,torepresentthemintermsofcomplexnumbersonly.Letα beanarbitraryquaternion,thenwede neitscomplexandweirdpartsas

Co( α) a0+a1i

Wd( α) a2+a3i.

Wecanthendecomposeα initscomplexandweirdpartasfollows:

α =a0+a1i+a2j+a3k

=(a0+a1i)+(a2+a3i)j

=Co( α)+Wd( α)j

Thisequationallowsustoderivemultiplicationrules,similartothoseofEquation11

)=Co( ) Wd( )Co( αβα)Co(βα)Wd (β

)=Co( )+Wd( )Wd( αβα)Wd(βα)Co (β(41)(38)(39)(40)

wherewede neCo ( α) [Co( α)] ,andsimilarlyfortheweirdpartWd ( α) [Wd( α)] .Itisinterestingtonotehowthenon-commutativityofquaternionsismadeapparentbythefactthat ,unliketheirequivalentfor andβneitheridentityinEquation41issymmetricwithrespecttoα

complexnumbers(Equation11),becauseingeneralCo ( α)=Co( α)andWd ( α)=Wd( α).WecanalsorewriteEquation37forthemodulusas

|α |=

|2|α |2+|β

uptoanarbitraryquaternionicphasefactor.Indeed,wehavethat

Φ≡Φ′ |Φ =η |Φ′ ,where|η |=1.(44)(45)

Quaternionic Computing(18).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)