Quaternionic Computing
wherewealsousedthefollowinggenericmatrixidentities
Re(A )=Re(A)t
Im(A )= Im(A)t.(16)
Inparticular,wehavethatOt=h(U)t=h(U )=h(U 1)=O 1,andwearedoneprovingTheorem3.
Thefactthathisagroupisomorphismisimportant,becauseitimpliesthatGNispreservedunder“serial”circuitconstruction.Inotherwords,itmeansthatifwehaverealcircuitsthatsimulatethequantumcircuitswithoperatorsUandV,thenwecansimulateaquantumcircuitwithoperatorUVbysimplyputtingbothrealcircuitstogether.Thissuggestsawayinwhichtodecomposetheproblemofsimulatingagenericquantumcircuit,i.e.byconstructingtherealcircuitonelevelatatime.
3.3.2TheSimulationAlgorithm
LetCbeagenericn-qubitquantumcircuitwithoperatorUC,composedofselementarygates.Thesimulationalgorithmwillconsistofthefollowingsteps:
Step1.Serialisethegivencircuitby ndinganorderingofitsgates,sothattheycanbe
evaluatedinthatorder,onebyone.Inotherwords, ndatotalorderofthecircuitgates,suchthatUC=U(s)U(s 1)...U(2)U(1).
Step2.Foreachgateg∈{1,...,s}intheaboveordering,replacethen-aryoperationU(g),
correspondingtotheg-thgate,withanadequaterealcircuitO(g)simulatingit.
Step3.ConstructtheoverallrealcircuitC′byconcatenatingthecircuitsforeachlevelg,in
thesameorderasde nedinStep1.Thisis,ifOCistheoperatorforC′,thenletOC=O(s)...O(2)O(1).
Step4.WriteadescriptionoftherealcircuitC′andofitsinputstateandaskthereal
computing“oracle”toprovidetheresultofameasurementonits nalstate.
Step5.Performtheclassicalpost-processingontheresultofthemeasurementandprovidea
classicalanswer.
Thealgorithm,asdescribedsofar,isnotcompletelyde ned.Inwhatfollows,wewillderive,onebyone,themissingdetails.
First,thetotalorderinStep1canbeobtainedbydoingatopologicalsortofthecircuit’sdirectedgraph.Thiscanbedonee cientlyintimepolynomialinthesizeofthecircuit5.Thee ectsofStep1onCaredepictedinFigure1.