手机版

Quaternionic Computing(19)

发布时间:2021-06-08   来源:未知    
字号:

Quaternionic Computing

Thecanonicalvaluesofthequaterbitcorrespondtothecanonicalbasis|0 and|1 ofthatvectorspace,andaregiventhesamesemanticsjustasbefore.Similarly,wecande nen-quaterbitstates,withthesamecanonicalbasisasforrebitsandqubits.Withthisde nition,themeasurementruleinEquation1isstillsoundandweadoptitaxiomatically.

Quaternionsareoftenusedincomputergraphicstorepresentrotationsofthe3DEuclideanspace.However,contrarytorebitsorqubits,wehavenotfoundanicegeometricinterpretationforthestatespaceofevenasinglequaterbit.

4.1.3QuaternionicCircuits

Forthesakeofclarity,letusdistinguishtheconjugatetransposeoperationforquaternionandcomplexmatricesbyrepresentingthemdi erentlywiththe( )and( )symbols,respectively.Asbefore,theonlyrelevantlineartransformationsQthatpreservel2normonthisvectorspacearethequaternionicunitarytransformations,whichhavethesamepropertyQ =Q 1ascomplexunitarytransformations.Theyformtheso-calledsymplecticgroupwhichisrepresentedasSp(N).

Thusarmedwithlinear,inner-productpreservingoperations,wecaninprinciplede nequater-nioniccircuitsinasimilarfashionaswede nedquantumandrealcircuits.Unfortunately,wecannotapplythesamede nitionofcomputationsemanticsasbefore,andthuscannotde nequaternionicalgorithmsinthesamewayeither.Thereasonissimpleandquitesurprising:theoutputofaquaternioniccircuitisnotuniquelyde ned!

Toseethis,considerthefollowingpropertyofthematrixtensorproduct,i.e.thedistributivityofthetensorproductwiththeregularmatrixproduct.

Quaternionic Computing

SupposenowthatthematricesA,B,C,DcorrespondtothegatetransformationsinthecircuitdepictedinFigure6.Then,thefactthatEquation46doesnotholdmeansthatthetwodi erentwaysshownthereofcombiningthegateswillyielddi erentoperatorsforthecircuit.Furthermore,evenifweinitialiseinbothcaseswiththesameinput,wewillobtaindi erentoutputstatistics.

Tofurtherillustratethisparadoxitisusefultothinkofthestatesofacircuitintermsoftemporalcutsinthecircuitgraph(see[10]foramoredetaileddescriptionofthisformalism).Wecanthinkofthesetofallpossiblestatesofagivencircuitgraphasitsdiscrete“space-timecontinuum.”Thecircuittopologyde nesanorderingonthissetthatisnaturallyassociatedwithastatebeing“before”or“after”another.Itishoweveronlypartiallyorderedassomestatesaretemporallyincomparable,i.e.thosecorrespondingtocutsofthegraphthatcrosseachother.Eachtopologicalsortofthecircuitgraphisoneofthemanypossibletotalorderingsofthesetofcuts,orinotherwordsachainintheposet(partially-orderedset)ofcuts,alsocorresponding,aswesawinSection3.3,toanevaluationsequenceofgates.Inmorephysicalterms,eachofthesechainsortotalorderscorrespondstoapossiblepathinthespace-timecontinuumofthecircuit.

WhenEquation46holds,weareguaranteedthattheoveralloperatorovereachandallofthesepathswillbethesame.However,inthecaseofthequaternioniccircuits,wecanexpecteachofthesepathstogiveadi erentanswer.Whichofthesemanypaths(forapoly-sizecircuit,thereareexponentiallymanyofthem)isthe“correct”one?Whichoneissomehowprivilegedbynature?Whichoneshouldwechoosetobethe“computationaloutput”ofthecircuit?Thefactisthatwedonotknowhowtoresolvethisambiguity,andwithoutdoingit,itisnotcompletelyclearwhat“the”modelofquaternioniccomputingshouldconsistof.

Wecangetoutofthisimpassebyallowingfora“parametrised”notionofaquaternionicalgorithm.

beaquaternioniccircuitofsizeDe nition4(OutputofaQuaternionicCircuit).LetC

sandletσ=(σ1,...,σs)representoneofthepossibletopologicalsortsofthecorresponding underσ,whichisobtainedwhencircuitgraph.WedenotebyQσtheoperatorofthecircuitC

thegatesarecombinedone-by-onefollowingtheorderinginσ,i.e.

Qσ=Q(s)Q(s 1)···Q(2)Q(1),

whereQ(i)isthe(in-context)operatorcorrespondingtothei-thgateinσ.

De nition5(QuaternionicAlgorithm).Aquaternionicalgorithmisde nedasaclassical TM,whichon(classical)inputxwillgeneratea(classical)descriptionofaquaternioniccircuitCanda(classical)descriptionofoneofitspossibletopologicalsortsσ.Theresultofmeasurementofthe nalstate|Φ =Qσ|Ψ0 ,where|Ψ0 isthedefaultinitialstate,isthenpost-processedbytheTMtoproduceits nal(classical)answer.

Relativetothissomewhatunsatisfyingnotionofquaternioniccomputation,wearestillabletoobtainthefollowingequivalenceresult.Thistheoremisthemainresultofthisarticle,anditsproofisveryheavilyinspiredfromthatofTheorem2.

Quaternionic Computing(19).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)