手机版

Quaternionic Computing(5)

发布时间:2021-06-08   来源:未知    
字号:

Quaternionic Computing

whereinthiscasewecandropthemodulusoperator|·|,becauseitisredundant.

Onephysicalinterpretationthatcanbegivenforrebitsorrebitsystemsisthatofasystemofphotons,whereweusethepolarisationintheusualmannertocarrytheinformation.However,thesephotonsarerestrictedtohavingzerocircularpolarisation,andbeingoperateduponwithpropagatorswhichneverintroducecircularpolarisation,i.e.orthonormaloperators.Thecomputationalbasismeasurementsarestillsimplepolarisationmeasurementsinthevertical-horizontalbasis.

RealCircuitsandRealComputationalComplexity

Wecanalsode neandconstructrealcircuits,asarestrictionofquantumcircuits.Topologically,theyarethesame,aswewillstillrequirethemtobeconstructedonlywithreversiblegates.Sinceorthonormalmatrices,likeunitarymatrices,arepreservedunderthetensoralgebrathatdescribescircuitconstructions(see[5,6]formoredetailsonthisformalism),itissu cienttorequirethattheelementarygatesbeorthonormal.Withthis,weareassuredthattheoverallcircuittransformationwillbenorm-preserving.Wecanthende neameasurementruleforcircuitstates,whichwillyieldclassicalresultswithprobabilitiesexactlyasinEquation7.Aswasnotedbefore,thisruleiscompletelygeneralanddoesnotdependonthe eldonwhichtheinner-productspaceofstatesisde ned.

RealAlgorithms

Tocompletethede nitionofthiscomputationalmodel,wemustde newhatitmeansforsuchrealcomputingdevicesto“compute”orto“solveaproblem.”Forthat,wesimplyrestrictthede nitionofaquantumalgorithmgivenabove.

De nition2(RealAlgorithm).Arealalgorithmisde nedasaclassicalTM,whichon(classical)inputxwillgeneratea(classical)descriptionofarebitcircuit.Theresultofmea-surementofthe nalstate|Φ oftherebitcircuitispost-processedbytheTMtoproduceits nal(classical)answer.

TheTMcanbeviewedashavingaccesstoauniversalcircuitevaluatorororacle,whichwillproduceaclassicalanswerb,withtheprobabilitiesde nedinEquation7.Itisimportanttonotethatnomatterwhatclassicalpost-processingtheclassicalTuringMachinedoesafterobtainingananswerfromtheOracle,its nalanswerultimatelyonlydependsontheoutcomeprobabilities.Inotherwords,fromtheTM’spointofview,itdoesnotmatterifthecircuitisphysicallyconstructedorjustsimulatedbytheOracle,nordoesitmatterwhattechnologywasusedorwhatmathematicalabstractionwasemployedinitssimulation.WhatmattersisthattheoutcomeprobabilitiesoftheOraclebethesameasthoseofcircuitdescriptionprovidedbytheTM.

3.2PreviouslyKnownResults

FromaComplexityTheorypointofview,the rstquestionthatarisesnaturallyishowdoesthisrealcomputingmodelcomparewiththequantumcomputingone.Inotherwords,canthe

Quaternionic Computing(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)