故答案为:
【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.
13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].
【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.
【解答】解:由约束条件作可行域如图,
联立,解得C(1,).
联立,解得B(2,1).
在x﹣y﹣1=0中取y=0得A(1,0).
要使1≤ax+y≤4恒成立,
则,解得:1.
∴实数a的取值范围是.
解法二:令z=ax+y,
当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,
可得,即1≤a≤;
当a<0时,y=﹣ax+z,在C点取得最大值,
①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)
②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)