12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.
13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.
14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).
15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.
16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.
17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)
三、解答题
18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB
(1)求角C的大小;
(2)若sinA=,求△ABC的面积.
19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.
(Ⅰ)求an和bn;
(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.
(i)求Sn;
(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.
20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.
(Ⅰ)证明:DE⊥平面ACD;
(Ⅱ)求二面角B﹣AD﹣E的大小.
21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.
(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;
(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.