∴AB中点坐标为(,),
∵点P(m,0)满足|PA|=|PB|,
∴=﹣3,
∴a=2b,
∴=b,
∴e==.
故答案为:.
【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.
17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)
【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.
【解答】解:∵AB=15m,AC=25m,∠ABC=90°,
∴BC=20m,
过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,