手机版

高三数学寒假作业冲刺培训班之历年真题汇编复(17)

发布时间:2021-06-08   来源:未知    
字号:

(2)若sinA=,求△ABC的面积.

【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.

(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.

【解答】解:(1)由题意得,,

∴,

化为,

由a≠b得,A≠B,又A+B∈(0,π),

得,即,

∴;

(2)由,利用正弦定理可得,得,

由a<c,得A<C,从而,故,∴.

【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.

19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.

(Ⅰ)求an和bn;

(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.

(i)求Sn;

(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.

【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;

高三数学寒假作业冲刺培训班之历年真题汇编复(17).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)