又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,
所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;
(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,
又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,
由于AC⊥平面BCDE,得AC⊥CD.
在Rt△ACD中,由DC=2,AC=,得AD=;
在Rt△AED中,由ED=1,AD=得AE=;
在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,
在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.
在△BFG中,cos∠BFG==,
所以,∠BFG=,二面角B﹣AD﹣E的大小为.
【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.
22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).
(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);
(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.
【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)