手机版

高三数学寒假作业冲刺培训班之历年真题汇编复(20)

发布时间:2021-06-08   来源:未知    
字号:

又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,

所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;

(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,

又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,

由于AC⊥平面BCDE,得AC⊥CD.

在Rt△ACD中,由DC=2,AC=,得AD=;

在Rt△AED中,由ED=1,AD=得AE=;

在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,

在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.

在△BFG中,cos∠BFG==,

所以,∠BFG=,二面角B﹣AD﹣E的大小为.

【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.

22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).

(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);

(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.

【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)

高三数学寒假作业冲刺培训班之历年真题汇编复(20).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)