人教版七年级数学下册
【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED=∠1+∠2;
(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;
(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.
【解答】解:(1)证明:如图,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠3=∠1,∠4=∠2,
∴∠3+∠4=∠1+∠2,
即∠BED=∠1+∠2;
(2)∠1+∠EGH=∠2+∠BEG,
理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,
∵AB∥CD,
∴AB∥EF∥GH∥CD,
∴∠1=∠3,∠4=∠5,∠6=∠2,
∴∠1+∠5+∠6=∠3+∠4+∠2,
即∠1+∠EGH=∠2+∠BEG;
(3)由题可得,向左的角度数之和与向右的角度数之和相等,
∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:
∠1+∠3+∠5=∠2+∠4+∠6.
第22页(共22页)